Комп'ютерний практикум №4

СТАТИСТИЧНИЙ РОЗПОДІЛ ТА ЙОГО ЧИСЛОВІ ХАРАКТЕРИСТИКИ

Мета: Навчитись визначати числові характеристики вибірки.

Змістовність роботи: Статистичний розподіл: таблична та графічна форма запису. Числові характеристики вибірки: середнє значення, дисперсія, середнє квадратичне відхилення, коефіцієнт асиметрії та ексцес. Використання функцій та пакету «Аналіз даних» MS Excel для розрахунку числових характеристик вибірки та побудови графіків.

4.1. Теоретичні відомості

Упорядкований перелік варіант і відповідних їм частот називається статистичним розподілом вибірки або дискретним варіаційним рядом. Якщо число різних значень у вибірці є досить великим, то розраховувати частоту кожного з них немає сенсу. У даному випадку складають інтервальний варіаційний ряд. Весь проміжок вибірки $[x_{min}, x_{max}]$ (від максимального до мінімального) розбивають на часткові інтервали, тобто проводять групування.

Число інтервалів може бути розраховане за формулою Стерджерса:

$$k \approx 1 + \log_2 n, \tag{4.1}$$

де $log_2 n = 3.322 lg n$, значення k підбирається цілим.

Довжина інтервалу знаходиться за формулою (4.2):

$$h = \frac{x_{max} - x_{min}}{k}.$$
(4.2)

За початок першого часткового інтервалу, як правило, вибирається точка $x_0 = x_{min} - \frac{h}{2}$.

У перший рядок таблиці інтервального ряду вписують часткові інтервали $[x_0, x_1], (x_1, x_2], ...(x_{k-1}, x_k]$, що мають однакову довжину h, при цьому весь інтервал $[x_0, x_k]$ повинен повністю покривати всі значення обраної ознаки, тобто $x_0 \le x_{min}, x_{max} \le x_k$. У другому рядку записується кількість попадань (частота) m_i (i=1,2...k) в кожен інтервал. Таким чином, статистичний розподіл має вигляд таблиці 4.1.

Таблиця 4.1 Інтервальний варіаційний ряд

$(x_{i-1}; x_i]$	$[x_0; x_1]$	$(x_1; x_2]$	•••	$(x_{k-1}; x_k]$	Σ
m_i	m_1	m_2	•••	m_k	$\sum_{i=1}^{k} m_i = n$
$p_i^* = \frac{m_i}{n}$	p_1^*	p_2^*	•••	p_k^*	$\sum_{i=1}^{k} p_i^* = 1$

При вивченні варіаційних рядів використовують також поняття накопиченої частоти $m_i^{\mu\alpha\kappa}$. Накопичена частота показує, скільки спостерігається варіантів із значенням ознаки, меншої за *x*. Відношення накопиченої частоти до загальної кількості спостережень називають накопиченою відносною частотою $p_i^{\mu\alpha\kappa}$. Накопичені частоти для кожного інтервалу знаходять послідовним сумуванням частот всіх попередніх інтервалів, включаючи даний.

Статистичний ряд може бути представлений у вигляді полігону, гістограми і кумуляти.

Полігоном частот або відносних частот називають ламану лінію, яка з'єднує точки дискретного ряду (x_i , m_i) або (x_i , p^*_i), відповідно (рис.4.1.а). Для неперервного ряду полігон будуються для середніх значень інтервалу x_{cep} .

Гістограмою відносних частот називаються ступінчаста фігура (рис.4.1.б), що складається з прямокутників, основою яких є часткові інтервали (довжини $h_i = x_i - x_{i-1}$), а висоти дорівнюють відношенню $f_i^* = \frac{p_i^*}{h}$ (або інколи $f_i^* = p_i^*$).

Кумулятою називається крива накопичених частот (рис.4.1.в), яка має вигляд ламаної лінії, що з'єднує точки (x_i , $m_i^{\text{нак}}$) або (x_i , $p_i^{\text{нак}}$).

Рис. 4.1 Графічний вигляд статистичного ряду: полігон відносних частот (а); гістограма відносних частот (б); кумулята відносних частот (в)

Числові та описові характеристики вибірки.

Для вибірки можна визначити ряд числових характеристик, аналогічних тим, що використовуються в теорії ймовірності та визначаються для випадкових величин. У таблиці 4.2 представлені найменування та позначення, що використовуються в статистиці для оцінки вибірки, і аналогічно – у теорії ймовірності. А також відповідні формули для розрахунку згрупованого статистичного ряду та відповідна функція MS Ехсеl. Оскільки в даній роботі розглянуто інтервальний ряд розподілу, то для розрахунку числових характеристика $x_i = \tilde{x}_i$, де $\tilde{x}_i = \frac{x_{i-1} + x_i}{2}$ - середина інтервалу, m_i – відповідна частота, i = 1, 2, ..., k. μ_3 та μ_4 - центральні моменти третього та четвертого порядків (див.КП.3).

Статистичне	Теорія	Формула	Функція
позначення	ймовірності		MS Excel
Вибіркове	Математичне	k *	СРЗНАЧ()
середнє	сподівання	$x_e = \sum x_i p_i$	
$\overline{\mathrm{x}_{\scriptscriptstyle\mathrm{B}}}$, $\overline{\mathrm{x}}$, $\mathrm{M}^*[\mathrm{X}]$, m_{χ}^*	M(x)	<i>i</i> =1	
Вибіркова	Дисперсія	k - 2 *	ДИСП()
дисперсія	D(x)	$D_e = \sum (x_i - x_e)^2 \cdot p_i$	
$D_{\scriptscriptstyle m B}$		<i>i</i> =1	
Вибіркове	Середньо-	$\sigma_{\rm p} = \sqrt{D_{\rm p}}.$	СТАНДОТКЛОН()
середньо-	квадратичне	D V D	
квадратичне	відхилення		
відхилення			
Мода <i>М</i>	Мода <i>М_о</i>	$M_{o}^{*} = x_{i-1} + h_{i} \cdot \frac{p_{i}^{*} - p_{i-1}^{*}}{(p_{i}^{*} - p_{i-1}^{*}) + (p_{i}^{*} - p_{i+1}^{*})},$	МОДА()
Медіана М _е *	Медіана М _е	$M_{e}^{*} = x_{i-1} + \frac{h_{i}}{p_{i}^{*}} \cdot \left(0, 5 - \sum_{j=1}^{i-1} \frac{h_{j}}{p_{j}^{*}}\right)$	МЕДИАНА()
Асиметрія, <i>а</i> _S	Асиметрія, <i>А</i> _S	$a_{s} = \frac{\mu_{3}}{\sigma_{e}^{3}}$	CKOC()
Ексцес, <i>еs</i>	Ексцес, <i>E</i> _S	$e_{s} = \frac{\mu_{4}}{\sigma_{e}^{4}} - 3$	ЭКСЦЕСС()

Таблиця 4.2 Оцінка вибірки для статистики та теорії ймовірності

4.2. Завдання до виконання роботи

Перед початком виконання роботи встановити «Пакет анализа данных». Для цього виконати наступні дії: «Файл» → «Параметры» → «Надстройки» → «Пакет анализа данных» і натиснути кнопку «Перейти» (рис.4.2). Обрати «Пакет анализа» і натиснути кнопку «ОК».

Надстройки	? 🗙
Доступные надстройки:	
Инструменты для евро	ОК
Пакет анализа — VBA	Отмена
- nonek pemennin	06 <u>3</u> 0p
	<u>А</u> втоматизация
-	
Пакет анализа	·
Содержит инструменты для ан финансовых данных	ализа научных и

Рис. 4.2 Вікно налаштування «Пакета анализа»

Створити файл MS Excel, який буде мати наступну назву: КП4_Прізвище студента_№варіанту.

Завдання 4.1.

Згенерувати вхідні данні в залежності від номеру варіанту (табл.4.3).

	1	2	3	4	5	6	7	8	9	10	11	12
n	100	110	120	130	100	110	120	130	100	110	120	100
$X_{_{\!$	20	20	20	0,64	0,64	0,64	40	40	40	0,93	60	45
$\sigma_{\scriptscriptstyle m B}$	3	4	2	0,1	0.34	0,57	7	5	3	0,1	35	5
	13	14	15	16	17	18	17	19	20	21	22	23
n	120	130	100	110	120	130	100	110	120	130	100	120
$X_{_{\!$	0,93	0,93	80	80	80	0,85	0,85	0,85	50	50	0,85	60
$\sigma_{\scriptscriptstyle \mathrm{B}}$	0,05	0,24	5	6	9	0,5	0,2	0,7	3	7	0,2	24

Таблиця 4.3 Вхідні дані до завдання 4.1.

n – число випадкових чисел;

 $\overline{x_{e}}$ – середнє значення;

б_в – середнє відхилення.

Для парних варіантів – розподіл нормальний, для непарних – Пуассона.

Спільні значення для всіх варіантів:

«Число переменных» - 1;

«Случайное рассеивание» - пусте поле;

«Параметры вывода» - «Выходной интервал» - виділити область для запису даних.

Порядок виконання Завдання 4.1.

1. Перейменувати «Лист 1» в «Завдання 4.1».

2. Згенерувати вхідні дані. Для цього виконати наступні дії: натиснути

«Данные» → «Анализ нанных» → «Генерация случайных чисел» (рис.4.3).

Генерация случайных чисел	? ×
Число переменных:	ОК
Цисло случайных чисел: 100	Отмена
<u>Р</u> аспределение: Нормальное	<u>С</u> правка
Параметры	
Ср <u>е</u> днее = 70	
Стандартное отклонение = 8	
Случ <u>а</u> йное рассеивание:	
Параметры вывода	
Выходной интервал: SA:SA	
Новый рабочий <u>л</u> ист:	
🔘 Новая рабочая <u>к</u> нига	

Рис. 4.3 Вікно «Генерация случайных чисел»

- 3. Заповнити дані відповідно до номеру варіанта.
- 4. Задати вхідні та натиснути кнопку «ОК».

Завдання 4.2.

Сформувати з отриманих даних таблицю даних та скласти варіаційний ряд. Приклад виконання в додатку 4.1.

Порядок до виконання Завдання 4.2.

1. Перейменувати «Лист 2» в «Завдання 4.2».

2. Сформувати таблицю «Вхідні дані». У даному прикладі 10 стовпців на 10 рядків.

3. Знайти мінімальне x_{min} та максимальне x_{max} значення вибірки за допомогою вбудованих функцій «МИН» та «МАКС», відповідно (рис.4.4). Для визначення x_{max} комірці D14 присвоїти значення «МАКС(D4:M13)», а для визначення x_{min} комірці D15 присвоїти значення «МИН(D4:M13)». (D4:M13) – масив варіаційного ряду.

Аргументы функции МАКС Число1 раниз Карана (188):104;91;97;77;103;86;79;86;100:82 Число2 Карана инслор	Аргументы функции МИН Число1 Ф.:М13 Ф:: В8:104;91;97;77;103;86;79;86;100:82 Число2 Ф:: В8:104;91;97;77;103;86;79;86;100:82
= 105	= 68
Возвращает наибольшее значение из списка аргументов. Логические и текстовые значения	Возвращает наименьшее значение из списка аргументов. Логические и текстовые значения
игнорируются.	игнорируются.
Число1: число1;число2; от 1 до 255 чисел, пустых ячеек, логических или	Число1: число1;число2; от 1 до 255 чисел, пустых ячеек, логических или
текстовых значений, среди которых ищется наибольшее значение.	текстовых значений, среди которых ищется наименьшее значение.
Значение: 105	Значение: 68
Справка по этой функции ОК Отмена	Справка по этой функции ОК Отмена
a)	ნ)

Рис. 4.4 Вікно функцій: «МАКС» (а) та «МИН» (б)

4. Розрахувати кількість часткових інтервалів за формулою Стерджеса (4.1), яка в MS Excel задається наступним чином: «=ОКРУГЛВВЕРХ((1+3,32*LOG10(СЧЁТ(D4:M13)));0)», де функція «СЧЁТ(D4:M13)» визначає об'єм вибірки, а «0» – вказує на число знаків після коми.

5. Довжину інтервалу знаходимо за формулою (4.2), яка в MS Excel задається наступним чином: «=ОКРУГЛВВЕРХ(((D14-D15)/G14);0)».

6. Знайдемо початок інтервалу x_0 за формулою (4.3), яка в MS Excel задається наступним чином: «=D15-(G15/2)». Якщо кількість інтервалів в п.2 була цілою, то $x_0 = x_{min}$.

7. Скласти таблицю 4.4.варіаційного ряду та відносних частот.

Таблиця 4.4 Інтервальний варіаційний ряд

k	Інтервал, (<i>x</i> _(<i>i</i>-1) ; <i>x</i> _{<i>i</i>}]	Середина інтервалу, \tilde{x}_i	Частота, <i>m_i</i>	Відносна частота, <i>p_i*</i>	f^*	F*

8. Заповнити значення *k* від 1 до 10.

9. Заповнити значення інтервалів (x_{i-1} ; x_i). Для цього виконати наступні дії: комірці D18 присвоїти значення J14 (x_0); комірці E18 присвоїти значення D18+G15 (h), скопіювати його та поширити на наступні комірки (E19:E27); D19 присвоїти значення E18, скопіювати та поширити на наступні комірки (D20:B27).

10. Знайти значення середини інтервалу. Комірці F18 присвоїти значення «=(E18+D18)/2», скопіювати та поширити на наступні комірки (F19: F27).

11. Визначити частоту. Для цього виділити відповідний масив розміщення частот (G18:G27) та за допомогою «Майстра функцій» задати функцію «ЧАСТОТА()» (рис.4.5). У полі «Массив_данных» задати дані вибірки (D4:M13), в у полі «Массив_интервалов» - масив визначених інтервалів (D18:E27). Натиснути разом клавіші CTRL+SHIFT+ENTER.

Аргументы функции			? 💌
ЧАСТОТА			
Массив_данных	D4:M13	- (88	3;104;91;97;77;103;86;79;86;100:
Массив_интервалов	D18:E27	(66	;70:70;74:74;78:78;82:82;86:86;
Вычисляет распределе: содержащий на один э. Масси	ние значений по интервалам и лемент больше, чем массив инт в_интервалов массив интервал группируются зн	= (0: возвращает ервалов. юв или ссыл ачения из г	чжээж лотожлалый массия, вертикальный массия, ака на интервалы, в которых массива данных.
Значение: О			
Справка по этой функц	ии		ОК Отмена

Рис. 4.5 Вікно функції «ЧАСТОТА»

12. Визначити відносну частоту. Для цього комірці H18 присвоїти значення «=G18/\$J\$15», де G18 – частота, \$J\$15 – об'єм вибірки.

13. Визначити частоту накопичення для побудови емпіричного графіку. Для цього комірці J18 присвоїти значення відносної частоти H18. Комірці J19 присвоїти значення «=J18+ H19». Скопіювати J19 та вставити до кінця ряду (J18: J27).

14. Зробити перевірку. Знайти суму частот та відносних частот.

Завдання 4.3.

Побудувати полігон відносних частот, гістограму та кумуляту. Приклад виконання завдання показаний у додатку 4.1.

Порядок виконання завдання 4.3.

1. Побудувати полігон відносних частот. Для цього виконати наступну послідовність: «Вставка»→«Диаграммы» → «Точечная с прямыми отрезнами и маркерами» → «Выбрать данные» (рис.4.6.а). Натиснути кнопку «Добавить» і у вікні «Изменение ряда» в полі «Имя ряда» напистати «Полігон відносних частот», в полі «Значения Х» - вставити ряд із значеннями середини інтервалу (F18:F27), у полі «Значения Y» - вставити ряд із значеннями відносної частоти (H18:H27).

Рис. 4.6 Вікна вибору даних для побудови полігону

2. Побудувати гістограму. Для цього виконати наступну послідовність: «Вставка» — «Диаграммы» — «Гистограма» — «Выбрать данные» (рис.4.6.а). Натиснути кнопку «Добавить» і у вікні «Изменение ряда» в полі «Имя ряда» напистати «Гістограма», в полі «Значения - вставити ряд із значеннями f^* (I18:I27) (4.7.а). Натиснути кнопку «ОК» і у вікні «Выбору источника данных» натиснути кнопку «Изменить» та ввести значення ряду середини інтервалу (F18:F27) (4.7.6). Перейти в «Экспресс-макет» і обрати «Макет 8».

Рис. 4.7 Вікна вибору даних для побудови гістограми

3. Побудувати кумуляту. Для цього виконати наступну послідовність: «Вставка»—«Диаграммы» — «Точечная с прямыми отрезнами и маркерами» — «Выбрать данные» (рис.4.4.а). Натиснути кнопку «Добавить» і у вікні «Изменение ряда» в полі «Имя ряда» напистати «Кумулята», в полі «Значения Х» - вставити ряд із значеннями середини інтервалу (F18:F27), в полі «Значения Y» - вставити ряд із значеннями F^* (J18:J27).

Завдання 4.4.

Знайти числові та описові характеристики вибірки. Приклад виконання завдання показаний у додатку 4.1.

Порядок виконання Завдання 4.4.

 Знайти середнє вибірки. Присвоїти комірці О18 значення «=СРЗНАЧ(D4:M13)», де масив (D4:M13) – вхідні дані.

 Знайти дисперсію вибірки. Присвоїти комірці О19 значення «=ДИСП(D4:M13)», де масив (D4:M13) – вхідні дані.

3. Знайти середнє відхилення вибірки. Присвоїти комірці О20 значення «=СТАНДОТКЛОНА(D4:M13)», де масив (D4:M13) – вхідні дані.

4. Знайти коефіцієнт асиметрії. Присвоїти комірці О21 значення «=СКОС(D4:M13)», де масив (D4:M13) – вхідні дані.

 Знайти ексцес. Присвоїти комірці О22 значення «=ЭКСЦЕСС(D4:M13)», де масив (D4:M13) – вхідні дані.

53

6. Знайти моду. Присвоїти комірці О23 значення «=МОДА(D4:M13)», де масив (D4:M13) – вхідні дані.

7. Знайти медіану. Присвоїти комірці О24 значення
 «=МЕДИАНА(D4:M13)», де масив (D4:M13) – вхідні дані.

Завдання 4.5.

Знайти числові характеристики та побудувати графіки статистичного розподілу за допомогою вбудованого аналізу даних. Приклад виконання завдання показаний у додатку 4.2.

Порядок виконання завдання 4.5.

1. Повернутися до даних, отриманих в «Завдання 4.1».

2. Знайти числові характеристики. Для цього виконати наступні дії: натиснути «Данные» → «Анализ нанных» → «Описательная статистика» (рис.4.8).

Описательная статистика		? 💌
Входные данные		
В <u>х</u> одной интервал:	\$A\$3:\$A\$100	
Группирование:	по стол <u>б</u> цам	Отмена
	○ по с <u>т</u> рокам	<u>С</u> правка
Метки в первой строке		
Параметры вывода		
	\$C\$1-\$E\$16	
о выходной интервал:		
Повыи рабочии <u>л</u> ист:		
🔘 Новая рабочая <u>к</u> нига		
Итоговая статистика		
Уровень надежности:	95 %	
🔲 К-ый <u>н</u> аименьший:	1	
К-ый наибольший:	1	

Рис. 4.8 Вікно «Описательная статистика»

У поле «Входной интервал» вставити ряд отриманих вхідних даних з завдання 4.1. Відмітити «Группирование» по стовпцях. У полі «Выходной интервал» виділити область виводу даних. Відмітити позначкою «Итоговая статистика». 3. Побудувати гістограму та кумуляту. Для цього виконати наступні дії: натиснути «Данные» → «Анализ нанных» → «Описательная статистика» (рис.4.9).

Гистограмма		? 💌
Входные данные В <u>х</u> одной интервал: И <u>н</u> тервал карманов: П Метки	SAS1:SAS100 📧	ОК Отмена <u>С</u> правка
Параметры вывода Выходной интервал: Новый рабочий дист: Новая рабочая <u>к</u> нига Парето (отсортированна <u>И</u> нтегральный процент Вывод <u>г</u> рафика	SDS88:SGS104 💽	

Рис .4.9 Вікно «Гистограмма»

У полі «Входной интервал» ввести вхідні дані. У полі «Интервал карманов» - ввсети дані з завдання 4.2 – середина інтервалу. Виділити поле для формування даних. Обрати вид гістограми.

4. Порівняти отримані дані з даними завдання 4.3 та 4.4.

4.3. Вимоги до оформлення звіту

1. Звіт має бути представлений в електронному вигляді.

2. Назва електронного файлу КП4_Прізвище студента_№варіанту.

3. Файл повинен містити наступні елементи:

Дано: вхідні дані – позначити жовтим;

Розв'язок: проміжні результати – позначити зеленим.

4. При заміні тільки вхідних даних (виділено жовтим) повинен змінюватись вихідний результат.

5. Оформлення завдань згідно Додатків 4.1-4.2.

6. Висновки по роботі.

Якщо звіт не відповідає вимогам, то КП не приймається!

4.4. Контрольні запитання

- 1. Що таке статистичний ряд? Які форми його запису?
- 2. Який вигляд має полігон частот?
- 3. Який вигляд має гістограма?
- 4. Який вигляд має кумулята?

5. Якими числовими характеристиками описується вибірка? Приведіть аналоги з теорії ймовірності.

6. Які функції MS Excel використовуються для створення варіаційного ряду?

- 7. Які два методи розрахунку в MS Excel числових характеристик ви знаєте?
- 8. Якими функціями MS Excel описують числові характеристики вибірки?
- 9. Назвіть переваги пакету «Аналіз даних».