ОСНОВНІ ПОНЯТТЯ ТА ЕЛЕМЕНТИ КОМБІНАТОРИКИ. ПЕРЕСТАНОВКА. РОЗМІЩЕННЯ. ПОЄДНАННЯ

Мета. Навчитись розв'язувати задачі теорії ймовірності з елементами комбінаторики із застосуванням програми MS Excel.

Змістовність роботи: Факторіал та його властивості; визначення і формули для розрахунку варіантів перестановок, розміщень з повтореннями і без повторень, поєднань; використання функцій MS Excel для розрахунків комбінацій.

1.1. Теоретичні відомості

Факторіал будь якого невід'ємного числа *n* це добуток всіх послідовних натуральних чисел від 1 до числа *n*. Факторіал числа *n* позначають через **n**!. Тобто можна записати що:

$$n! = n(n-1)(n-2)(n-3)...$$
(1.1)

3 формули (1.1) випливає, що факторіали для *n*=0 та *n*=1 дорівнюють 0!=1 та 1!=1.

При збільшенні числа *n* (після *n*=14) значення факторіалу починає стрімко зростати (рис.1.1) і тому розрахунок стає занадто складним. У цьому випадку користуються наближенням Муавра-Стирлінга.

$$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n. \tag{1.2}$$

Рис. 1.1 Значення факторіалу для різних значень *n*

Для розрахунку факторіалу в MS Excel використовують вбудовану функцію «ФАКТР(п)».

Перестановкою (без повторень) є розміщення заданої кількості різних предметів у визначеному порядку, при цьому предмети не повторюються.

Нехай дано *n* різних предметів, тоді кількість можливих перестановок *P*_n визначається за формулою 1.3.

$$P_n = n! = n(n-1)(n-2)(n-3) \cdot \dots \cdot 2 \cdot 1.$$
(1.3)

Перестановкою (з повтореннями) є розміщення заданої кількості різних предметів у визначеному порядку, предмети при цьому можуть повторюватись.

Нехай *n* – загальна кількість предметів, з яких є *i* повторень: n₁, n₂,..,n_i. Тоді кількість можливих перестановок *P*_{n(повтор)} визначається за формулою:

$$P_{n(nosmop)} = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_i!}.$$
 (1.4)

Розміщенням (без повторень) *n* предметів по *m* місцям (розміщення з *n* по *m*) називають комбінацію з *m* різних предметів, які містять *n* предметів. **Порядок** послідовності в даному випадку **важливий**.

Кількість можливих перестановок з n по m позначають як A_n^m та розраховують за формулою розміщень:

$$A_n^m = n(n-1) \cdot \dots \cdot (n-m+1) = \frac{n!}{(n-m)!}.$$
(1.5)

Для розрахунку розміщень без повторень в MS Excel використовують вбудовану функцію «ПЕРЕСТ(n;m)».

Розміщенням (з повтореннями) n предметів по m місцям (розміщення з n по m з повтореннями) називають комбінація з m предметів, які містять nпредметів. Тобто є n типів предметів та m місць, на кожне з яких може стати предмет будь якого типу. Будь який тип предмету може зустрітись в отриманій комбінації будь-яку кількість разів, але **порядок** послідовності в даному випадку **важливий**.

Кількість можливих розміщень з повтореннями з n по m позначають як $A_{n(nosmon)}^{m}$ та розраховують за формулою розміщень:

$$A_{n(nosmop)}^{m} = n^{m}.$$
 (1.6)

Для розрахунку розміщень з повтореннями в MS Excel використовують наступний вираз «=**n^m**».

Поєднаннями (без повторень) з *n* предметів по *m* називають комбінацію вибору *m* предметів з *n* без врахування порядку вибору. **Порядок** послідовності в даному випадку **не важливий**.

Кількість можливих поєднань з *n* по *m* позначають як C_n^m та розраховують за формулою поєднань:

$$C_n^m = \frac{n!}{m!(n-m)!}.$$
 (1.7)

Для розрахунку розміщень без повторень в MS Excel використовують вбудовану функцію «ЧИСЛОКОМБ(n;m)».

Поєднаннями (з повтореннями) з *n* предметів по *m* називають комбінація вибору *m* предметів з *n* без врахування порядку вибору. **Порядок** послідовності в даному випадку **не важливий**.

Тобто є *n* типів предметів з яких необхідно вибрати *m*. **Порядок** послідовності в даному випадку **не важливий**.

Кількість можливих поєднань з *n* по *m* позначають як $C_{n(nosm)}^m = C_{n+m-1}^m$ та розраховують за формулою поєднань:

$$C_{n+m-1}^{m} = \frac{(n+m-1)!}{m!(n-m+m-1)!} = \frac{(n+m-1)!}{m!(n-1)!}$$
(1.8)

В таблиці 1.1. Наведено основні формули комбінаторики та відповідні функції в MS Excel.

Назва	Формула	Функція в MS Excel				
Перестановки	$P_n = n!$	ФАКТР(n).				
Розміщення (без повторень)	$A_n^m = \frac{n!}{(n-m)!}$	ПЕРЕСТ(n;m)				
Розміщення (з повтореннями)	$A^m_{n(nosmop)} = n^m$	n^m				
Поєднання (без повторень)	$C_n^m = \frac{n!}{m!(n-m)!}$	ЧИСЛКОМБ(n;m)				

Таблиця 1.1 Формули комбінаторики

Правило суми. Якщо деякий об'єкт *А* може бути вибраний із сукупності обєктів *m* способами, а другий об'єкт *B* може бути вибраний *n* способами, то вибрати **або** *A*, **або** *B* можна *m*+*n* способами.

Правило добутку. Якщо об'єкт A може бути вибраний із сукупності об'єктів m способами і після кожного такого вибору об'єкт B можна вибрати n способами, то пара об'єктів (A, B), тобто A і B, у вказаному порядку може бути вибрана $n \cdot m$ способами.

1.2. Завдання для виконання

Створити файл MS Excel, який буде мати наступну назву: КП1_Прізвище студента_№варіанту.

Завдання 1.1. Визначити відхилення значення факторіалу, використовуючи функцію ФАКТР (*n*) від значення, розрахованого за формулою Муавра-Стирлінга (1.1).

Створити таблицю в MS Excel наступного вигляду

Таблиця 1.2 Оформлення результатів завдання 1.1

n	n!	Формула Муавра- Стирлінга	Відхилення

Заповнити її для n=*i*…*k*, з інтервалом *a*. Значення *i* вибираються з таблиці 1.3, *k*=20+*i*+№В, *a* – для непарного №В – 1, для парного №В – 2.

Таблиця 1.3 Вхідні дані до завдання 1.1 відповідно до номеру варіанта

№B	1	2	3	4	5	6	7	8	9	10	11	12
i	1	4	6	8	10	1	4	6	8	10	2	5
№B	13	14	15	16	17	18	19	20	21	22	23	24
i	1	4	6	8	10	1	4	6	8	10	3	7

Побудувати порівняльні графіки залежності кількості елементів до точного та наближеного значення факторіалу n!.

Приклад оформлення наведено в додатку 1.1.

Порядок виконання Завдання 1.1.

1. У нижньому лівому куті перейменувати «Лист 1» на «Завдання 1.1».

2. Записати вхідні дані як показано в додатку 1.1.

3. Створити в MS Excel таблицю 1.2.

4. Під колонкою *n* комірці присвоїти значення *i*, для цього в робочому рядку набрати «=» та натиснути на комірку зі значенням *i* (рис.1.2). (У даному випадку значення *i* знаходиться в комірці D5).

5. Для створення значень від *i*-1 до k з інтервалом a виконати наступні дії: Перейти у відповідну комірку та задати значення n_1+a наступною формулою «=ЕСЛИ(C13=\$D\$6;"stop";C13+\$D\$7)». Де символ \$ фіксує значення, а оператор «ЕСЛИ» зупиняє значення, що більші за k. Отримане значення (C14 на рис.1.2) скопіювати і вставити в задану кількість комірок.

Рис. 1.2 Фрагмент оформлення вхідних даних до Завдання 1.1

6. Під колонкою n! комірці (D13) присвоїти функцію ФАКТР(n). Для цього виконати наступні дії. Натиснути f_x , вибрати функцію ФАКТР і в наступному вікні комірки «число» присвоїти значення n_1 (C13 на рис.1.2) (рис.1.3).

Мастер функций - шаг 1 из 2	
Оиск функции: Введите краткое описание действия, которое нужно выполнить, и нажните кнопку "Найти"	
Категория: 10 недавно использовавшихся • Выберите функцию:	Аргументы функции
ЧИСЛКОМБ ПЕРЕСТ ФАКТР СОБ СУЛИМ	ФАКТР Число С13 🛛 🙀 = 1
СЧЕТ СРЭнач ФАКТР(число) Возвращает факториал числа, равный 1*2*3**число.	 = 1 Возвращает факториал числа, равный 1*2*3**число. Чнсло неотрицательное число, факториал которого вычисляется.
Справка по этой функции ОК Отнена	Эначение: 1 <u>Справка по этой функции</u> ОК Отмена

Рис. 1.3 Вибір функції «ФАКТР»

7. Скопіювати отримане значення та вставити для наступних значень *n*.

 8. Під колонкою Формула МС комірці (Е13) присвоїти формулу (1.2), яка в середовищі МЅ Ехсеl матиме наступний вигляд: «=((2*3,14*C13)^(1/2))*(C13/2,7)^C13».

9. Скопіювати отримане значення та вставити для наступних значень *n*.

10. Знайти відхилення, для цього від колонки «n!» відняти колонку «Формула MC».

 Побудувати графік залежності кількості елементів від точного та наближеного значення факторіалу п!. Підписати осі: «Макет» → «Название осей», назва легенди: «Конструктор» → «выбрать данные» → «изменить».

12. Зробити висновок.

Завдання 1.2.

Визначити кількість можливих комбінацій елементів *n* в залежності від використаного закону комбінаторики згідно таблиці 1.1.

Порядок виконання Завдання 1.2.

1. У нижньому лівому куті перейменувати «Лист 2» на «Завдання 1.2».

2. Задати вхідні дані: загальну кількість об'єктів *n* та сприятливих виходів *m* відповідно до номеру варіанта (таблиця 1.4).

№В	1	2	3	4	5	6	7	8	9	10	11	12
n	8	10	12	16	18	20	24	26	28	30	35	38
т	2	3	4	5	6	2	3	4	5	6	8	10
№В	13	14	15	16	17	18	19	20	21	22	23	24
n	30	28	26	24	20	18	16	12	10	8	7	14
т	2	3	4	5	6	2	3	4	5	6	4	8

Таблиця 1.4 Вхідні дані до завдання 1.2 відповідно до номеру варіанту

3. Для розрахунку операцій комбінацій створити таблицю 1.5

Таблиця 1.5 Оформлення результатів завдання 1.2

Операція	Кількість
Перестановки n об'єктів без повторень	
Перестановки n об'єктів з повтореннями	
Розміщення по m елементів з n без повторень	
Розміщення по m елементів з n з повтореннями	
Поєднання m елементів з n без повторень	
Поєднання m елементів з n з повтореннями	

4. Вибрати комірку для розрахунку кількості перестановок n об'єктів без повторень. Натиснути f_x , вибрати функцію «ФАКТР» і в наступному вікні комірки «число» присвоїти значення n (у даному випадку С6, див додаток 2). 5. Обрати комірку для розрахунку кількості перестановок об'єктів з повтореннями за формулою (1.4). За значення n_1 взяти значення m. Оскільки існує обов'язкова умова n > m, при якій розрахунок можливий, скористаємось оператором «ЕСЛИ». Для цього з можливих f_x виберемо «ЕСЛИ» (рис.1.4) та заповниим наступні комірки:

Аргументы функции			? ×							
ЕСЛИ										
Лог_выражение	C7>C6	=	= ЛОЖЬ							
Значение_если_истина	"невірно, m>n"	=	= "невірно, m>n"							
Значение_если_ложь	ΦAKTP(C6)/ΦAKTP(C7)	=	= 604800							
Проверяет, выполняется ли условие, и возвращает одно значение, если оно выполняется, и другое значение, если нет. Значение_если_ложь значение, которое возвращается, если 'лог_выражение' имеет значение ЛОЖЬ. Если не указано, возвращается значение ЛОЖЬ.										
Значение: 604800										
Справка по этой функции			ОК Отмена							

Рис. 1.4 Вікно оператора «ЕСЛИ»

5.1. У комірці «Лог_выражение» ввести умову, у даному випадку *n>m*.

5.2. У комірці «Значение_если_истина» ввести результат: у даному випадку *m>n*, тому згідно п.5. «невірно».

5.2. У комірці «Значение_если_ложь» ввести результат: у даному випадку *n>m*, тому згідно п.5 це значення визначається за формулою 1.4, яка в MS Excel задається як:

 $\langle \Phi = AKTP(n)/((\Phi AKTP(n_1) \cdot \Phi AKTP(n_2) \cdot ... \cdot \Phi AKTP(n_n)) \rangle$.

6. Обрати комірку для розрахунку кількості розміщень по m об'єктів з n без повторень за формулою (1.5). Оскільки існує обов'язкова умова n > m, при якій розрахунок можливий, скористаємось оператором «ЕСЛИ». Для цього повторимо операції 5.1-5.2, з урахуванням того, що формула для визначення кількості перестановок без повторень в MS Excel задається як «ПЕРЕСТ(n,m)».

7. У сусідній комірці отримати кількість розміщень по m об'єктів з n без повторень за допомогою вбудованої функції «ПЕРЕСТ(n,m)» (рис.1.5). Натиснути f_x , вибрати функцію «ПЕРЕСТ» і в наступному вікні комірки «число» присвоїти значення n (в даному випадку Сб), «Число_выбраных» - значення m (в даному випадку С7).

8. Вибрати комірку для розрахунку кількості розміщень по *m* об'єктів з *n* з повтореннями за формулою (1.6). У даному випадку умова *n>m* неважлива. Тому задаємо формулу (1.6). як *nⁿm* («[^]» - задається як «shift6»).

Аргументы функции		? ×
TEPECT		
Число	C6 💽	= 10
Число_выбранных	C7 💽	= 3
Возвращает количество пере объектов. Число_выб	становок заданного числа объектов, к ранных целое число, задающее коли	 720 которые выбираются из общего числа ичество объектов в каждой перестановке.
Значение: 720 Справка по этой функции		ОК Отмена

Рис. 1.5 Вікно функції «ПЕРЕСТ»

9. Вибрати комірку для розрахунку кількості перестановок m об'єктів з n без повторень за формулою (1.7). Оскільки існує обов'язкова умова n>m, при якій розрахунок можливий, то скористаємось оператором «ЕСЛИ». Для цього повторити пункти 5.1-5.2, з урахуванням того, що формула для визначення кількості перестановок без повторень в MS Excel задається як «ЧИСКОМБ(n, m)».

10. У сусідній комірці отримати кількість перестановок m об'єктів з n без повторень за допомогою вбудованої функції «ЧИСЛКОМБ» (рис.1.6). Натиснути f_x , вибрати функцію «ЧИСЛКОМБ» і в наступному вікні комірки «число» присвоїти значення n (в даному випадку С6), «Число_выбраных» - значення m (в даному випадку С7).

Аргументы функции			? ×
ЧИСЛКОМБ			
Число	C6 💽	=	- 10
Число_выбранных	C7 💽	=	: 3
Возвращает количество Число_	комбинаций для заданного числа элем выбранных число элементов в каж	= ент дой	= 120 тов. й комбинации.
Значение: 120			
Справка по этой функции	1		ОК Отмена

Рис. 1.6 Вікно функції «ЧИСЛОКОМБ»

11. Вибрати комірку для розрахунку кількості поєднань *m* об'єктів з *n* з повтореннями за формулою (1.8). У даному випадку умова *n>m* неважлива. Тому задамо формулу (1.8). як «=ФАКТР(n+m-1)/ ФАКТР(m)·ФАКТР(n-1)».
12. Зробити перевірку – змінити значення вхідних даних, що виконувалась умова *m>n*.

13. Приклад оформлення завдання показано в додатку 1.2.

Завдання 1.3. Розв'язати та оформити в MS Excel через вбудовані функції наступні задачі. Приклад оформлення в додатку 1.3. 1.3.1. Набираючи код, робітник забув *m* останніх цифр, але пам'ятає що вони *n* і набрав їх навмання. Усі цифри різні. Знайти ймовірність того, що він набрав їх правильно з першого разу. Значення *m* та *n* приведено в табл.1.6.

відповідно до номеру варіа												ріанту
№В	1	2	3	4	5	6	7	8	9	10	11	12
m	2	3	4	5	2	3	4	5	2	3	5	4
n	без 0 і 3	парні і 0	Не- парні	різні	Не- парні	без 1 і 3	парні	парні і О	різні	без 0, 1 і 3	без 2 i 7	різні
№В	13	14	15	16	17	18	19	20	21	22	23	24
т	4	5	2	3	4	5	2	3	4	5	3	4
n	без 1 і 3	без 1	парні	різні	парні і 0	без 1	без 0, 1 і 3	Не- парні	парн і і 0	без 0	без 5	різні

Таблиця 1.6 Вхідні дані до завдання 1.3.1 та 1.3.2 відповідно до номеру варіанту

1.3.2. У ящику 20+№В деталей, помічених номерами 101, 102, …, 130. Навмання достали *m* карт. Знайти ймовірність того, що карти мають задані номера. Значення *m* приведено в таблиці 1.6.

1.3.3. У коробці *n* деталей, помічених номерами 1, 2, … п. Навмання по одній витягають всі деталі. Знайти ймовірність того, що деталі з'являться в зростаючому порядку. Де *n*=№В+10.

1.3.4. Студент займається спортом, причому n1 днів плаванням, n2 днів легкою атлетикою та має n3 днів вихідних. Складіть студенту графік, щоб заняття не повторювалися.

№B	1	2	3	4	5	6	7	8	9	10	11	12
n1	1	2	3	4	1	2	3	4	1	2	1	3
<i>n2</i>	4	2	1	2	2	4	2	1	4	3	3	2
<i>n3</i>	2	3	4	1	4	1	2	2	2	2	3	2
№B	13	14	15	16	17	18	19	20	21	22	23	24
n1	3	4	1	2	3	4	1	2	3	4	0	5
<i>n2</i>	3	2	2	3	1	3	3	2	1	0	3	1
<i>n</i> 3	1	1	4	2	3	0	3	3	3	3	4	1

Таблиця 1.7 Вхідні дані до завдання 1.3.4 відповідно до номеру варіанту

1.3.5. Шифр складається з *m*1 цифр та *m*2 букв. Скільки існує варіантів даного шифру, якщо спочатку йдуть цифри, а потім букви?

Вхідні дані: для *парного номеру* варіанту – цифри від 0 до 9, букви голосні; для *непарного* – цифри непарні, букви приголосні; значення *m*1 та *m*2 наведено в табл.1.8.

№В *m1 m* 2 №В *m* 1

Таблиця 1.8 Вхідні дані до завдання 1.3.5 відповідно до номеру варіанту

1.3.6. У партії *n* деталей, з яких *m* стандартних. Знайти ймовірність того, що серед навмання витягнутих *k* може виявитись:

А) хоча б *m1* стандартна; Б) *m2* стандартні; В) *m3* стандартні;

m 2

m1 – для *парного номеру* варіанту 2, для *непарного* – 1; *m2* - для парного номера варіанту 3, для непарного – 2; *m3* = *k*

№В	1	2	3	4	5	6	7	8	9	10	11	12
т	5	6	7	8	9	5	6	7	8	9	7	5
n	8	10	12	12	12	7	9	11	13	13	13	11
k	3	4	5	4	5	3	4	5	4	5	3	3
№B	13	14	15	16	17	18	19	20	21	22	23	24
т	5	6	7	8	9	5	6	7	8	9	6	7
n	9	9	10	10	12	7	8	9	14	14	11	10
k	3	3	4	4	5	3	3	3	4	5	3	3

Таблиця 1.9 Вхідні дані до завдання 1.3.6 відповідно до номеру варіанту

1.3. Вимоги до оформлення звіту

1. Звіт має бути представлений в електронному вигляді.

2. Назва електронного файлу КП1_Прізвище студента_№варіанту.

3. Файл повинен місти наступні елементи:

Дано: вхідні дані – позначити жовтим;

Знайти: невідоме з вказаною умовою – позначити червоним;

Розв'язок:

Позначити задані умови через події. Зробити опис кожної дії – позначити зеленим.

Відповідь: - позначити червоним.

4. При заміні тільки вхідних даних (виділено жовтим) повинен змінюватись вихідний результат.

5. Оформлення завдань згідно Додатків 1.1-1.3.

6. Висновки по роботі.

Якщо звіт не відповідає вимогам, робота не зараховується!

1.4. Контрольні запитання

1. Факторіал та його властивості. Як відрізняються значення, отримані за формулою Муавра-Стерлінга?

2. Чим перестановки без повторень відрізняються від перестановок з повтореннями? Наведіть приклад.

3. Чим розміщення з повтореннями відрізняються від розміщень без повторень? Наведіть приклад.

4. Чим поєднання без повторень відрізняються від поєднань з повтореннями?

5. У яких випадках використовують формулу перестановок?

6. У яких випадках використовують формулу розміщень? Наведіть приклад.

7. У яких випадках використовують формулу поєднань? Наведіть приклад.